Average Heat Transfer Coefficient in Rectangular Ducts with Baffle Blockages

Authors

  • Majid Molki Mechanical Engineering, Southern Illinois University
Abstract:

An experimental investigation was conducted to study the average and the fully-developed heat (mass) transfer coefficients in a rectangular smooth duct and a duct with repeated-baffle blockages. The focus of attention in this work is the conventional correlation Nu / Nufd 1 + C / ( X / D ) for the average heat transfer coefficient. It was shown that for relatively short ducts, the coefficient C is not constant but, in general, it depends on the length of the duct. The experiments were carried out via a mass transfer technique and the analogy between heat and mass transfer was employed to predict the heat transfer coefficients. The flow Reynolds number ranged from 3000 to 50,000 with the height of the baffles equal to h/H = 0, 0.125, 0.25 and 0.50.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

Local Heat Transfer Coefficients in a Rectangular Duct with Plate Blockages of Variable Stream Wise Spacing

An experimental investigation is conducted to determine the effect of repeated-plate blockages of variable streamwise spacing on heat transfer characteristics of turbulent flow in rectangular ducts. The plates are attached to the upper and lower walls in a staggered arrangement. The experiments are carried out by mass transfer and the analogy between heat and mass transfer provides the necessar...

full text

Mass „Heat... Transfer Downstream of Blockages With Round and Elongated Holes in a Rectangular Channel

Turbulent forced convective mass (heat) transfer downstream of blockages with round and elongated holes in a rectangular channel was studied. The blockages and the channel had the same 12:1 (width-to-height ratio) cross section, and a distance equal to twice the channel height separated consecutive blockages. The diameter of the holes was either 0.5 or 0.75 of the height of the channel. Naphtha...

full text

Investigation of Heat Transfer in Rectangular Microchannels

An experimental investigation was conducted to explore the validity of classical correlations based on conventionalsized channels for predicting the thermal behavior in single-phase flow through rectangular microchannels. The microchannels considered ranged in width from 194 lm to 534 lm, with the channel depth being nominally five times the width in each case. Each test piece was made of coppe...

full text

Analysis of Fluid Dynamics and Heat Transfer in a Rectangular Duct with Staggered Baffles

This computational fluid dynamic analysis attempts to simulate the incompressible steady fluid flow and heat transfer in a solar air channel with wall-mounted baffles. Two ꞌSꞌ-shaped baffles, having different orientations, i.e., ꞌSꞌ-upstream and ꞌSꞌ-downstream, were inserted into the channel and fixed to the top and bottom walls of the channel in a periodically staggered manner to develop vorti...

full text

Application of ZnO/TiO2 Nanocomposite for the Improvement of Heat Transfer Coefficient in Tube Heat Exchangers

The potential of nanofluids for the improvement of heat transfer coefficient in various heat exchangeequipment has been considered and studied as a major application during recent decades. In this research,heat transfer coefficient of ZnO, TiO2 and ZnO/TiO2 nanofluids in a shell and tube heat exchanger has beenstudied experimentally. ZnO nanoparticle was synthesized through pre...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 1  issue 4

pages  211- 218

publication date 1988-11-01

By following a journal you will be notified via email when a new issue of this journal is published.

Keywords

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023